عرض مشاركة واحدة
قديم 20-09-2009, 11:34 AM
  #1
فؤاد هيثم
 الصورة الرمزية فؤاد هيثم
 
La spécialité: Archetecture
جامعة العربي بن المهيدي أم البواقي
تاريخ التسجيل: 17-08-2009
الدولة: DZ
المشاركات: 242
فؤاد هيثم عضو يستحق التميزفؤاد هيثم عضو يستحق التميز
افتراضي الرياضيات -- شامل




الرياضيّات
الرياضيّات نظام للتفكير المنظّم يتّسع تطبيقه باستمرار. وهو علم الدراسة المنطقية لكم الأشياء وكيفها وترابطها, كما أنه علم الدراسة المجردة البحتة التسلسلية للقضايا والأنظمة الرياضية.
وَللرياضيّات ثلاثة أوجه رئيسيّة (الجبر والهندسة والتحليل):
فتركيب مجموعات الأجسام وضمّ بعضها إلى البعض الآخر أدّى إلى مفاهيم العدد والحساب والجبر؛ بينما أدّى الإهتمام بقياس الزمان والمكان إلى الهندسة وعلم الفلك ومفهوم التسلسل الزمني. أما المجهود المبذول لفهم فكرتيّ الاستمرار والحدّ فقد أدّى إلى التحليل الرياضي وإلى اختراع الحسابين التفاضلي والتكاملي في القرن السابع عشر. هذه الأوجه الثلاثة للرياضيّات تتداخل إلى حدّ كبير.
الحساب
يشمل دراسة الأعداد الصحيحة والكسور والأعداد العشرية وعمليات الجمع والطرح والضرب والقسمة. وهو بمثابة الأساس لأنواع الرياضيات الأخرى حيث يقدم المهارات الأساسية مثل العد والتجميع الأشياء والقياس ومقارنة الكميات.
برزت اهمية معدّلات التغيّر في الفيزياء عام 1638، عندما وجد غاليليو (1564 ـ 1642) ان سرعة جسم يهبط في الفضاء أو يُرمى به فيه، تزداد باطّراد، أي أن معدّل ازدياد سرعة الجسم إلى أسفل هو ثابت . لكن ما هو مسار ذلك الجسم؟ حُلّت هذه المسألة بوضوح ونهائياً بفضل عبقرية اسحق نيوتن (1642 ـ 1727) وغوتفريد ليبنتز (1646 ـ 1716)، وكان حساب التفاضل والتكامل الذي اكتشفاه، الأداة المستعملة لهذا الغرض. حساب التفاضل والتكامل يعطي طرائق الحصول على التسارع انطلاقاً من السرعة، وعلى السرعة انطلاقاً من الموقع، موفراً الحل الدقيق للمسألة بكاملها.
في الميكانيكا، وهي فرع الفيزياء الذي وضع حساب التفاضل والتكامل من أجله، نجد هذا النوع من الحساب في جميع نواحي قانون نيوتن الثاني للحركة: القوة تساوي حاصل ضرب الكتلة بالتسارع. فإذا كانت اثنتان من هذه الكميات الثلاث معروفتين، فالمعادلة تكشف فوراً قيمة الثالثة.
الجبر
خلافاً للحساب, فالجبر لا يقتصر على دراسة أعداد معينة, إذ يشمل حل معادلات تحوي أحرفاً مثل س وص, تمثل كميات مجهولة. كذلك يستخدم في العمليات الجبرية الأعداد السالبة والأعداد الخيالية (الجذور التربيعية للأعداد السالبة).
في علم الحساب، تُمثَّل بالأعداد مختلف الكميات، كالاطوال والمساحات ومبالغ المال. إلا أن بعض المسائل الرياضية تهتم بالبحث عن عدد يمثّل كمية مجهولة. إذا كان مثلاً مجموع عددين 10 وكان احدهما 6، فما هو العدد الآخر؟ الجواب على هذه المسألة البسيطة هو 4. إلا أن أصول العثور عليه تقنة اساسية من تقنات الجبر. لحل هذه المسألة في علم الجبر، نمثّل العدد المجهول بحرف س ونقول: لدينا س+ 6= 10 (هذه معادلة جبريّة)؛ بطرح 6 من كلا الطرفين تتبسّط المعادلة: س= 10- 6= 4. فبِجَعل الحرف س يمثّل الكمية المجهولة، تمكنّا من حل المسألة.
الرياضيون الاغارقة والعرب:
استعمل رياضيون اغارقة، ومنهم ديوفانتوس (القرن الثالث ق.م.)، الأحرف في المعادلات. لكن كلمة الجبر اتت من العربية. ومعناها تجبير العظام، وقد جاءت جزءاً من عنوان كتاب للرياضي العربي الكبير الخوارزمي. بحلول القرن السادس عشر أصبحت المسائل الرياضية تصاغ في الغرب بتعابير جبريّة. وقد بدأ بذلك في فرنسا فرنسيسكوس فياتا (1540 ـ 1603) . ثم ادخل الرياضي الفرنسي رينيه ديكارت (1596 ـ 1650) الاصطلاح الذي اصبح شائعاً لاستعمال الأحرف الأخيرة من الابجدية اللاتينية (X, Y, Z) للدلالة على الكميات المجهولة، والاحرف الأولى (a, b, c) للحلول محل الاعداد المعلومة.
المعادلات والصيغ الجبرية:
تطبّق عملياً المعادلات الجبرية العاديّة في الصيغ المختلفة المستعملة في العلوم، ولا سيما في الرياضيات والفيزياء. فحجم الاسطوانة مثلاً يعطى بالمعادلة: ح= ؟ ش 2 ر، حيث ح تمثّل حجم الاسطوانة و ش شعاع احدى قاعدتها و ر ارتفاعها.
تعالج المعادلات والصيغ الجبرية حسب قواعد ثابتة. فبالامكان مثلاً تغيير المعادلة السابقة لمعرفة ارتفاع اسطوانة ذات حجم معيّن إلى المعادلة: ر= ح/؟ش 2. هذه الصيغ هي عامة، وتطبّق على جميع الاسطوانات، سواء كانت طويلة ورفيعة أو قصيرة وثخينة. هنالك صيغ مماثلة لمساحات جميع الاشكال الهندسية العادية واحجامها.
كثير من المسائل الجبرية تحتوي على أكثر من كمية مجهولة واحدة. لنأخذ مثلاً مسألة اكتشاف عددين موجبين يكون حاصل ضربهما 15 وباقي طرحهما 2. لنمثّل العددين بالحرفين س و ص، ولنترجم المعطيات بالمعادلة: س× ص= 15. لهذه المعادلة عدة حلول: 6×2,5 أو، 3 و 5؛ 7,50 و 2 الخ. لاجراء العملية علينا استعمال المعطيات الأخرى حول «الفرق»، فنحصل على المعادلة: ص- س= 2. لكي نعرف قيمة ص، نحوّل هذه المعادلة إلى: ص= س+ 2 ثم نستبدل قيمة ص هذه في المعادلة الأولى، فنصل إلى المعادلة س× (س+ 2)= 15 أو س 2+ 2 س- 15= صفر، يساعد الجبر على فهم الأحاجبي والتناقضات الظاهرية. فأي عدد مؤلف من ثلاثة أرقام، ويساوي الرقم الوسط فيه مجموع الرقمين الآخرين، هو عدد قابل للقسمة على 11. لماذا؟ يمكن الحصول على الجواب بواسطة الجبر. الحل في هذا الجدول اعداد مؤلفة من 3 أرقام. ولها جميعها خاصّتان مشتركتان: الأولى أن الرقم الأوسط يساوي حاصل جمع الرقمين الآخرين، الثانية أن هذه الاعداد جميعها قابلة للقسمة على 11. إذا مثّل س الرقم الأول و ص الرقم الثالث يكون الرقم الأوسط: (ص+ س) . وتكون قيمة العدد بكامله: 100 س+ 10 (س+ ص)+ ص أي 110س+ 11ص؛ يعطي اختزال العبارة وتحليلها إلى عواملها: 11 (10س+ ص) . وهي صيغة نهائية تطبّق على جميع الأعداد في الجدو ويظهر منها أن هذه الأعداد قابلة للقسمة على 11.
671-473-341-220-110
682-484-352-231-121
693-495-363-242-132
770-550-374-253-143
781-561-385-264-154
792-572-396-275-165
880-583-440-286-176
891-594-451-297-187
990-660-462-330-198
الجبر البُولي والجبر الافتراضي
جبر المجموعات معروف بالجبر البُولي نسبة إلى جورج بُول (1815 ـ 1864) الذي اسّس المنطق الحديث. هذا الجبر متشاكل (أي متناظر احادي) مع الجبر الافتراضي أي المنطق. يستعمل هذان النوعان من الجبر رموزاً مختلفة: ففي الأول: (؟) يعني اتحاد و(؟) يعني تقاطع؛ يقابل ذلك في الثاني: (؟) يعني «و»، (؟) يعني «أو». الجبر الافتراضي يحلّل مجموعات الاحتمالات المنطقية التي تكون فيها مختلف القضايا البسيطة أو المركبة صحيحة أو خاطئة.
يتم خلق نظام رياضي، عندما تطبّق عملية ثنائية واحدة أو أكثر على مجموعة من العناصر. العملية الثنائية هي التي تجمع عنصرين لتكوّن عنصراً ثالثاً من المجموعة الواحدة. من أكثر الأنظمة الرياضية نفعاً «الزُّمرة»؛ فهي تظهر في حالات مختلفة عدّة وتساعد على توحيد دراسة الرياضيات. نظرية الزمر وضعها ايفاريست غالوا (1811 ـ 1832) واعطاها فيما بعد أرثر كايلي (1821 ـ 1895) شكلاً منهجياً. يمكن توضيح مفهوم الزمرة بدراسة رقصة تشكيلية بسيطة (6)، حيث يغيّر أربعة راقصين مواقعهم (أو يبقون في اماكنهم) لتأليف تشكيلات مختلفة.
من الاختيارات الأربعة المتوفّرة لتحريك مستطيل (9)، تنتج مجموعة من أربعة تحوّلات. إذا اخذنا منها ازواجاً وطبّقنا عليها عملية «يتبع» السابقة، ينتج عنها جملة تحرّكات متناظرة أحادياً مع تلك التي وجدناها في المثل عن الرقص. يعرف هذان النوعان بالمتشاكلين. البحث عن التشاكلات هو بالحقيقة أساس دراسة الرياضيات.
الهندسة
نشأت الهندسة عن حاجة قدماء المصريين إلى مسح الأراضي الغائبة المعالم، للتمكّن بإنصاف من توزيع مساحاتها الخصبة المغطّاة بالوحل الذي يتركه الفيضان السنوي لنهر النيل. اخذ الأغارقة الهندسة عن المصريين وبنوا منها صرحا فكريا تامّا. فقد أنشأت «مبادىء الهندسة»، التي وضعها اقليدس حوالي 300 ق.م.، نظاماً بدهياً كاملاً هو نسيج متشابك من براهين تشتق جميعها من بعض البدهيات الأساسية. ظهرت «المبادىء» وكأنها تتحدى العقل بقولها: «إذا لم تستطع البرهان على أمر، فلا تقل انك تعرفه».
وفيما بعد طور علماء الرياضيات نظماً بديلة للهندسة رفضت فرضية إقليدس المتعلقة بالمستقيمات المتوازية. وقد أثبتت هذه الهندسات المخالفة لفرضية إقلديس (الهندسة اللاإقليدية) فائدتها - على سبيل المثال - في النظرية النسبية التي تعد واحدة من الإنجازات القيمة للتفكير العلمي.
وَتعرف الهندسة على أنها فرع من الرياضيات يُعنى بدراسة هيئات وأحجام ومواضع الأشكال الهندسية. وهذه الأشكال تشمل الأشكال المستوية كالمثلثات والمستطيلات والأشكال المجسَّمة (ثلاثية البعد مثل المكعبات والكرات).
تبرز أهمية الهندسة لأسباب عديدة. فالعالم يفيض بالأشكال الهندسية. وبما أن الأشكال الهندسية تحيط بنا من كل جانب لذلك سيكون فهمنا وتقديرنا لعالمنا أفضل لو تعلمنا شيئاً عن الهندسة.
للهندسة أيضاً تطبيقات عملية في مجالات عدة. فالمعماريون والنجَّارون يحتاجون لفهم خواص الأشكال الهندسية لتشييد مبانٍ آمنة وجذابة. كما يستخدم المصمِّمون والمهندسون المشتغلون بالمعادن والمصوِّرون مبادىء الهندسة في أداء أعمالهم.

علماء الهندسة المشهورون
أرخميدس
جاوس، كارل فريدريك فيثاغورث
إقليدس
ديكَارْت، رِينيه
الأشكال والإنشاءات الهندسية
الأسطوانة
السباعي
المثلث
الثماني الأوجه
السداسي
المجسم الأرخميدي
الجامد
السداسي السطوح
المربع
الجسم الكروي
الشكل المتعدد السطوح
المضلع
الخط المنحرف
القطاع الناقص
المعين
الخط الهندسي
القطر
المقطع الذهبي
خماسي الأضلاع
القطع المكافىء
المكعب
الدائرة
المتكررة الهندسية
المنشور
رباعي الأضلاع
متوازي الأضلاع
الهرم
الزاوية
المخروط
أنواع الهندسة
يشتمل مجال دراسة الهندسة على عدة طرق. فقد تكون الهندسة إقليدية أو لا إقليدية انطلاقاً من المسلمات نفسها التي تستخدمها الهندسة الإقليدية ولكنها توظف طرائق جبرية لدراسة الأشكال الهندسية. أما فروع الهندسة التي لا تستخدم أساليب الجبر فتسمى هندسات تركيبية.
ويمكن تقسيم الهندسة الإقليدية إلى هندسة مستوية وهندسة مجسمة. وتختص الهندسة المستوية (الهندسة المسطحة) بدراسة الأشكال ذات البعدين مثل المستقيمات والزوايا والمثلثات والأشكال الرباعية والدوائر. أما الهندسة المجسَّمة أو الفراغية فتتعلق بدراسة الأشكال ذات البُعْد الثلاثي.
وإحدى أهم مسلمات الهندسة الإقليدية هي مسلمة التوازي لإقليدس وتُعْرف أيضاً بمسلمة إقليدس الخامسة أو بديهية التوازي، وإحدى صياغاتها هي: من نقطة لا تقع على مستقيم معلوم يمكن رسم مستقيم واحد يمر بتلك النقطة ويوازي المستقيم المعلوم.
الهندسة اللاإقليدية: هناك نوع أساسي من الهندسة اللاإقليدية يدعى الهندسة الزائدية، وفيها تستبدل بمسلمة التوازي المسلمة التالية: من نقطة لا تقع على مستقيم معلوم يمكن رسم أكثر من مستقيم يمر بتلك النقطة ويوازي المستقيم المعلوم.
وفي أحد نماذج الهندسة الزائدية يعرَّف المستوى على أنه مجموعة النقاط الواقعة داخل دائرة، ويعرف المستقيم على أنه وتر من الدائرة، وتعرف المستقيمات المتوازية على أنها المستقيمات التي لا تتقاطع. وتسمى الهندسة الزائدية أحياناً هندسة لوباتشيفسكي إذ إنها اكتشفت في بداية القرن التاسع عشر الميلادي بواسطة عالم الرياضيات الروسي نيكولاي لوباتشيفسكي. وهناك نوع أساسي آخر من الهندسة اللاإقليدية يدعى الهندسة الناقصية تستبدل فيها بمسلمة التوازي المسلمة التالية: من نقطة لا تقع على مستقيم معلوم لا يمكن رسم مستقيم لا يقاطع المستقيم المعلوم. بعبارة أخرى المستقيمات المتوازية لا وجود لها في الهندسة الناقصية.
وفي أحد نماذج الهندسة الناقصية نعرِّف المستقيم على أنه دائرة عظمى على الكرة، حيث الدائرة العظمى هي أي دائرة تنصف الكرة إلى جزأين متساويين. وكل الدوائر العظمى على الكرة تتقاطع. وتسمى الهندسة الناقصية، أيضاً، هندسة ريمان إذ إنها تطوَّرت في منتصف القرن التاسع عشر الميلادي على يد عالم الرياضيات الألماني جورج فريدريك برنارد ريمان.
الهندسة التحليلية: طريقة لدراسة الخواص الهندسية للأشكال باستخدام الوسائل الجبرية.
تستخدم الهندسة التحليلة نظاماً إحداثياً. يسمى النظام الديكارتي ويتكون من خطي أعداد متعامدين في المستوى. ويُحدَّد موقع النقاط في الأشكال الهندسية في المستوى بإعطائها إحداثيين (عددين)على خطي الأعداد س، ص. ويسمى س الإحداثي السيني وهو يحدد موقع النقطة بالنسبة لمحور س (خط الأعداد الأفقي) بينما يحدِّد ص ويسمى الإحداثي الصادي موقع النقطة بالنسبة لمحور ص (خط الأعداد الرأسي).
العرب والهندسة
لم يستطع أحد بعد إقليدس الذي دوّن علم الهندسة أن يزيد على هذا العلم شيئاً أساسياً. غير أن العرب لهم أفضال على الهندسة؛ إذ إنهم اهتموا بها حينما أهملتها الشعوب الأخرى ثم حفظوها من الضياع وناولوها الأوروبيين في زمن باكر.
برع العرب في قضايا الهندسة وشرحوها، فقد عرفوا تستطيح الكرة وألّفوا فيه ومارسوه فنقلوا الخرائط من سطح الكرة إلى السطح المستوي، ومن المسطح المستوي إلى السطح الكرويّ. ولقد كان اهتمام العرب بالناحية العملية من الهندسة أكثر من اهتمامهم بالناحية النظرية. ومن العلماء العرب الذين احتلوا منزلة كبيرة في الهندسة العالم العربي المسلم البيروني (ت440 هـ، 1048 م) ومن أشهر كتبه، كتاب استخراج الأوتار في الدائرة بخواص الخط المنحني فيها. كما استطاع غياث الدين الكاشي في القرن الخامس عشر الميلادي أن يستخرج نسبة محيط الدائرة إلى قطرها ويحسبها حساباً دقيقاً.
وممن اشتهر في علم المثلثات العالم العربي المسلم أبو عبد الله محمد بن جابر البتاني (ت317 هـ، 929 م). وهو أول من وضع جداول لظل التمام. وتبدو مكانة أبي الوفاء البوزجاني (ت388 هـ، 998 م) في المثلثات واضحة، فقد أوجد طريقة لحساب جداول الجيب، وكذلك عرف الصلات في المثلثات.
الهندسة الفراغيَّة
المتوقّع من الرياضيين والمهندسين أن يتوصّلوا إلى حساب مساحات مختلف الأجسام الصلبة واحجامها. مساحة الأجسام المستوية السطوح تساوي مجموع مساحات سطوحها. أما بالنسبة للاهرام والاسطوانات والموشورات والمخروطات والمجسّمات الاهليلجية، فالمسألة أكثر تعقيداً. إلا أنه يمكن حساب مساحاتها


واحجامها باستعمال الهندسة الفراغية، أي هندسة الاشكال ذوات الأبعاد الثلاثة
.

لا يشمل موضع الهندسة الفراغية اشكال الأجسام والمجمّعات فقط، بل يتناول أيضاً الانفعالات والقوى غير المرئية التي تخترق تلك الأجسام. فهذه الهندسة تحدّد مثلاً الشكل الواجب اعطاؤه للسدّ كي لا يهدّمه ضغط الماء، ومقدار طفو مركب ذي شكل معيّن، ومقدار ميله إذا حُمّل بطريقة غير متوازنة. أما القوى التي هي أكثر تعقيداً من الجاذبية، فأنها تثير مشاكل حلّها أكثر صعوبة.
في المضلّع المنتظم، جميع الأضلاع والزوايا متساوية، كما في المثلّث المتساوي الاضلاع والمربّع والخمّس.



برهن اقليدس على أن هنالك خمسة مجسّمات منتظمة فقط، تكون جميع سطوحها مضلّعات منتظمة متساوية: رباعي السطوح (أ)؛ المكعّب (ب)؛ المثمّن السطوح (ت)؛ ذو الاثني عشر سطحا (ث)؛ وذو العشرين سطحا (ج) . المكعّبات وحدها تتجمّع معا لملء الفراغ كلياتن.
جميع المجسّمات التي لا تحتوي على ثقوب واوجهها مسطّحة تخضع لنظرية اويلر: ق+ و= ض+ 2، حيث ق يمثّل عدد الرؤوس (القمم)، و: عدد الأوجه، ض: عدد الأضلاع. في الرباعي السطوح المثلّثية (أ) نحصل على: 4+ 4= 6+ 2. وفي المثمّن السطوح (ب) يكون معنا: 6+ 8= 12+ 2. يخضع الشكلان ت و ث للقاعدة ذاتها. هذه النظرية تثير العجب، لأنها لا تتأثر بشكل المجسّم أو حجمه.



التعديل الأخير تم بواسطة فؤاد هيثم ; 20-09-2009 الساعة 11:36 AM سبب آخر: خطأ
فؤاد هيثم غير متواجد حالياً  
رد مع اقتباس